站内搜索:
    • 公司:
    • 深圳精成学社数学家教老师方老师
    • 联系:
    • 方老师
    • 邮箱:
    • 365808458@qq.com
    • 手机:
    • 13427980436
    • 地址:
    • 深圳福田区百花园紫荆阁
    • 微信:
本站共被浏览过 188373 次
用户名:
密    码:

分享:
产品信息
您所在的位置:首页 > 详细信息

深圳数学方老师,多年专业经验,值得信赖

2019-09-23 05:21:02 489次浏览

价 格:面议

立体几何初步

(约18课时)

(1)空间几何体

①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

(2)点、线、面之间的位置关系

①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

◆公理2:过不在一条直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

◆公理4:平行于同一条直线的两条直线平行。

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

操作确认,归纳出以下判定定理。

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆一个平面过另一个平面的垂线,则两个平面垂直。

操作确认,归纳出以下性质定理,并加以证明。

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

◆垂直于同一个平面的两条直线平行。

◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

③能运用已获得的结论证明一些空间位置关系的简单命题。

深圳精成学社数学家教老师方老师版权所有ID:35065121) 技术支持:武汉百业网科技有限公司   百业网客服:方佳平

1

回到顶部