产品信息
您所在的位置:首页 > 详细信息

深圳数学家教教学,1对1针对性教学,查缺补漏

2020-02-28 07:40:02 734次浏览

价 格:面议

三角函数

(约16课时)

(1)任意角、弧度

了解任意角的概念和弧度制,能进行弧度与角度的互化。

(2)三角函数

①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。

③借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、和最小值、图象与x轴交点等)。

④理解同角三角函数的基本关系式:

⑤结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。

⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

平面向量

(约12课时)

(1)平面向量的实际背景及基本概念

通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

(2)向量的线性运算

①掌握向量加、减法的运算,并理解其几何意义。

②掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。

③了解向量的线性运算性质及其几何意义。

(3)平面向量的基本定理及坐标表示

①了解平面向量的基本定理及其意义。

②掌握平面向量的正交分解及其坐标表示。

③会用坐标表示平面向量的加、减与数乘运算。

④理解用坐标表示的平面向量共线的条件。

(4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。

②体会平面向量的数量积与向量投影的关系。

③掌握数量积的坐标表达式,会进行平面向量数量积的运算。

④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

(5)向量的应用

经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

三角恒等变换

(约8课时)

(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。

(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。

深圳精成学社数学家教老师方老师版权所有ID:35065121) 技术支持:武汉百业网科技有限公司   百业网客服:方佳平

1

回到顶部